Home | Kontakt | Impressum | ÜbersichtDeutschEnglish
NIM nanosystems initiative munich
Meldung

Montag, 27. März 2017

Stau in der Zelle

Proteintransport

Foto: pixabay.com

Foto: Kara / Fotolia.com

Sich treiben lassen auf der Umleitung: Motorproteine behindern sich in Zellfortsätzen gegenseitig, deshalb kommen frei diffundierende Proteine effektiver zum Ziel, zeigt ein theoretisches Modell von LMU-Physikern.

Zu Ferienbeginn kommt es zu langen Staus auf den Autobahnen, da die Fahrzeuge der Urlauber sich gegenseitig behindern. Ein ähnlicher Effekt kann auch beim Transport von Proteinen in Zellfortsätzen auftreten. Das zeigen Simulationen der LMU-Physiker Professor Erwin Frey und Isabella Graf, über die sie im Fachmagazin Physical Review Letters berichten. Die Wissenschaftler haben ein theoretisches Modell entwickelt, das nahelegt, dass die Proteine schneller vorankommen, wenn sie sich abseits der Transportbahnen einfach von der Diffusion treiben lassen – und erst kurz vor dem Ziel auf Transportvehikel „umsteigen“.

Zellfortsätze sind fingerförmige Ausstülpungen von Zellen, die durch starre Bündel aus Aktinfilamenten in ihrem Inneren stabilisiert werden. Damit Proteine ihre Funktion – etwa bei der Zellwanderung, der Wundheilung und der Signalübertragung – erfüllen können, müssen sie bis zur Spitze der Ausstülpung gelangen. Dies kann entweder passiv durch Diffusion im Zytoplasma geschehen, oder indem die Proteine mithilfe von Motorproteinen, die sich wie auf Schienen entlang der Aktinfilamente bewegen, aktiv bis zur Spitze transportiert werden. „Naiv würde man davon ausgehen, dass der gerichtete Transport sehr viel schneller ans Ziel führt als die diffusive Bewegung“, sagt Graf. „Wir haben nun aber das Zusammenspiel zwischen gerichteter Bewegung und Diffusion in einem halbgeschlossenen System, wie es auch die Zellfortsätze darstellen, mithilfe eines mathematischen Modells simuliert und dabei zu unserer Überraschung festgestellt, dass der diffusive Transport effizienter ist.“

Das Modell der Wissenschaftler legt nahe, dass der gerichtete, aktive Transport von Proteinen im Zellfortsatz erheblich behindert wird, weil sich die Motorproteine gegenseitig räumlich behindern. Da sie sich weder durchdringen noch überholen können, entstehen Korrelationen und die Motoren können sich nicht mehr unabhängig voneinander bewegen. Dadurch kommt es zu einem „biologischen Stau“ auf den Aktinfilamenten, der – ebenso wie der reale Stau auf der Autobahn – das Fortkommen deutlich bremst.

Das von den Wissenschaftlern entwickelte mathematische Modell berücksichtigt diese gegenseitigen Behinderungen sowie die Dichte der Motorproteine und kann den Transportstrom auf dem Aktinfilament akkurat vorhersagen. Aus ihren Simulationen schließen die Wissenschaftler, dass Proteine durch diffusive Bewegungen an die Spitze des Zellfortsatzes gelangen – kurz vor dem Ziel aber möglicherweise noch auf die Motoren umsteigen. „An der Spitze des Fortsatzes hat der Stau, wenn er nicht zu lang wird, potenziell auch einen positiven Effekt“, sagt Graf. „Wenn die Proteine nur langsam vorwärts kommen, halten sie sich dadurch länger in diesem Bereich auf und haben mehr Zeit, ihre Aufgaben zu erfüllen.“ Darüber hinaus deutet das Modell darauf hin, dass es biologisch sinnvoll sein könnte, dass sich die Motoren an der Spitze leichter von den Aktinfilamenten lösen als weiter hinten, denn dies könnte verhindern, dass sich zu lange Staus auf den Filamenten bilden, und gleichzeitig ermöglichen, dass sich sie Proteine bevorzugt an der Spitze aufhalten. [LMU]

Physical Review Letters 2017

PRESSE-KONTAKT

Über NIM:

Dr. Peter Sonntag
Geschäftsführer

Tel.: +49 (89) 2180 6794

Öffnet ein Fenster zum Versenden der E-Mailpeter.sonntag(at)lmu.de 

 

Über Wissenschaft:

Dr. Birgit Ziller
Presse- und Öffentlichkeitsarbeit

Tel: +49 (89) 2180 5091

Opens window for sending emailbirgit.ziller(at)lmu.de

 

 

drucken nach oben