Home | Kontakt | Impressum | ÜbersichtDeutschEnglish
NIM nanosystems initiative munich
Meldung

Freitag, 19. Januar 2018

Akkordarbeit am Nano-Fließband

DNA-Origami

Elektrische Felder steuern den rotierenden Nano-Kran – 100.000 mal schneller als bisherige Methoden. Bild: E. Kopperger

Elektrische Felder steuern den rotierenden Nano-Kran – 100.000 mal schneller als bisherige Methoden. Bild: E. Kopperger

Nano-Roboter werden nun schnell genug für die Fließbandarbeit in molekularen Fabriken. Ein Team um die NIM-Wissenschaftler Prof. Dr. Friedrich Simmel und Prof. Don C. Lamb hat eine neue, elektrische Antriebstechnik für Nano-Roboter entwickelt. Mit dieser lassen sich molekulare Maschinen hunderttausendmal schneller bewegen als mit den bisher genutzten biochemischen Prozessen.

 

Auf, ab, auf, ab. Im Gleichtakt schwingen die Lichtpunkte hin und her. Erzeugt werden sie von leuchtenden Molekülen, die an der Spitze winziger Roboterarme fixiert sind. Am Monitor des Fluoreszenzmikroskops verfolgt Professor Öffnet externen Link in neuem FensterFriedrich Simmel die Bewegung der Nano-Maschinen. Ein Mausklick genügt, um die Lichtpunkte in eine andere Richtung wandern zu lassen.
„Durch Anlegen elektrischer Felder können wir die Arme beliebig in der Ebene drehen,“ erklärt der Inhaber des Lehrstuhls für Physik Synthetischer Biologischer Systeme an der TU München. Seinem Team ist es erstmals gelungen Nano-Roboter elektrisch zu steuern und auch gleich einen Rekord aufzustellen: Denn damit ist die neue Antriebstechnik ist 100.000-mal schneller ist als alle bisherigen Methoden. Die neuen Forschungsergebnisse erscheinen am 19. Januar als Coverstory in der renommierten Fachzeitschrift Öffnet externen Link in neuem FensterScience.

DNA-Origami-Roboter für die Fertigung der Zukunft
Weltweit arbeiten Wissenschaftler an neuen Technologien für die Nano-Fabriken der Zukunft. In denen sollen eines Tages wie am Fließband biochemische Proben analysiert oder medizinische Wirkstoffe hergestellt werden. Die dafür notwendigen Miniatur-Maschinen lassen sich bereits kostengünstig mit Hilfe der DNA-Origami-Technik herstellen.
Dass diese molekularen Maschinen nicht längst im großen Maßstab genutzt werden, liegt daran, dass sie bisher nur sehr langsam arbeiten. Durch Zugabe von Enzymen, DNA-Strängen oder mit Hilfe von Licht werden die Bausteine aktiviert und können bestimmte Aufgaben ausführen, beispielsweise Moleküle aufnehmen und transportieren.
Für die Ausführung solcher Aktionen benötigen herkömmliche Nano-Roboter allerdings Minuten, manchmal auch Stunden. Eine effiziente molekulare Fließbandarbeit lässt sich mit diesen Methoden kaum realisieren.

Elektronik macht schnell
„Um nanotechnische Produktionslinien aufzubauen, braucht man eine andere Antriebstechnik. Unsere Idee war es, auf das biochemische Schalten der Nano-Maschinen völlig zu verzichten und stattdessen die Wechselwirkung der DNA-Strukturen mit elektrischen Feldern zu nutzen“, erklärt der TUM-Forscher Simmel.
Das Prinzip hinter der neuen Antriebstechnik ist einfach: DNA-Moleküle enthalten negative Ladungen. Durch Anlegen elektrischer Felder lassen sich die Biomoleküle daher bewegen. Theoretisch ist es damit möglich, Nano-Roboter aus DNA mit Hilfe von Stromimpulsen zu steuern.

Roboterbewegung unterm Mikroskop
Um herauszufinden, ob und wie schnell sich die Roboterarme parallel zu einem elektrischen Feld ausrichten, fixierten die Forscher Nano-Roboterarme auf einem Glasträger und platzierten diesen in einen speziell dafür entwickelten Probenhalter mit elektrischen Kontakten.
Jede einzelne der von Erstautor Enzo Kopperger gefertigten Miniatur-Maschinen besteht aus einer starren Grundplatte von 55 mal 55 Nanometern, auf der sich, verbunden durch ein flexibles Gelenk aus ungepaarten Basen, ein 400 Nanometer langer Arm befindet. Der Aufbau sorgt dafür, dass sich der Arm in der Horizontalen beliebig drehen kann.
In Kooperation mit Fluoreszenz-Spezialisten um Professor Öffnet externen Link in neuem FensterDon C. Lamb von der LMU markierten die Forscher die Spitzen der Roboterarme mit Farbstoffmolekülen. Deren Bewegung verfolgten sie mit einem Fluoreszenz-Mikroskop. Computergesteuert änderten sie die Richtung des elektrischen Feldes. Auf diese Weise konnten die Forscher die Orientierung der Arme beliebig einstellen und Bewegungsvorgänge vorgegeben.
„Das Experiment hat gezeigt, dass sich molekulare Maschinen elektrisch bewegen und folglich auch antreiben lassen“, sagt Simmel. „Dank der elektronischen Steuerung können wir Bewegungen im Millisekunden-Takt ausführen und sind damit 100.000 Mal schneller als bisherige biochemische Antriebe.“

Auf dem Weg zur Nano-Fabrik
Die neue Steuerungstechnik eignet sich nicht nur, um Farbstoffe oder Nano-Partikel hin- und herzubewegen. Die Arme der Miniatur-Roboter können auch Kräfte auf Moleküle ausüben. Diese Wechselwirkung lässt sich beispielsweise für die Diagnostik und für die Pharmaentwicklung nutzen, betont Simmel: „Nano-Roboter sind klein und preiswert. Millionen von ihnen könnten gleichzeitig arbeiten, um in einer Probe nach bestimmten Stoffen zu suchen oder um Schritt für Schritt – wie am Fließband – komplizierte Moleküle zu synthetisieren.“


Die Arbeit wurde gefördert durch den Sonderforschungsbereich SFB 1032 „Nanoagents“ der Deutschen Forschungsgemeinschaft und die International Graduate School of Science and Engineering der TUM sowie das Center for Nano Science und das BioImaging Network der LMU.


Quelle: Pressestelle TUM


Publikation:
A self-assembled nanoscale robotic arm controlled by electric fields. E. Kopperger, J. List, S. Madhira, F. Rothfischer, D. C. Lamb, F. C. Simmel, , Science, 19. Jan. 2018. doi: Öffnet externen Link in neuem Fenster10.1126/science.aao4284


Kontakt:

Prof. Dr. Friedrich C. Simmel
Physik Synthetischer Biologischer Systeme
Technische Universität München
Am Coulombwall 4a
D-85748 Garching

Tel: +49 – (0)89 – 289 – 11610

E-Mail: Öffnet ein Fenster zum Versenden der E-Mailsimmel(at)tum.de

Web: Öffnet externen Link in neuem Fensterwww.e14.ph.tum.de/en/home/


Prof. Dr. Don C. Lamb
Lehrstuhl für Physikalische Chemie I
Ludwig-Maximilians-Universität München
Butenandtstr. 11, Haus E
D-81377 München

Tel: +49 – (0)89 – 2180 – 77564

E-Mail: Öffnet ein Fenster zum Versenden der E-Maild.lamb(at)lmu.de

Web: Öffnet externen Link in neuem Fensterwww.cup.uni-muenchen.de/pc/lamb/

PRESSE-KONTAKT

Über NIM:

Dr. Peter Sonntag
Geschäftsführer

Tel.: +49 (89) 2180 6794

Öffnet ein Fenster zum Versenden der E-Mailpeter.sonntag(at)lmu.de 

 

Über Wissenschaft:

Isabella Almstätter
Presse- und Öffentlichkeitsarbeit

Tel: +49 (89) 2180 5091

Öffnet ein Fenster zum Versenden der E-Mailisabella.almstaetter(at)physik.uni-muenchen.de

 

 

drucken nach oben